CHAPTER 2
The Wave-Particle Duality
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- Awave Is a disturbance which is periodic in space and time.

- A vibration is a disturbance which is periodic in space or time.
o Vovelongh W=Asin(2mx/A-wt)
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i The current | leads the voltage ¥V in phase
Tlme

by angle ¢ . This implies a capacitive circuit.

U= VA k = —— wave number

velocity=frequency x wavelength /1
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Single Slit Diffraction

single slit ~ double slit




Interference
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s Wave-Particle Duality: Light
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Does light consist of particles or waves? When one focuses upon the different types of phenomena observed with light, a strong case can be
built for a wave picture:

''''''
.......
. ;

Interference Diffraction Polarization

By the turn of the 20th century, most physicists were convinced by phenomena like the above that light could be fully described by a wave,
with no necessity for invoking a particle nature. But the story was not over.

Can be explained in terms of  Can be explained in terms of
waves. particles.
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Phenomenon

Most commonly observed phenomena with light can be

Refraction N\ v o+~ Vv explained by waves. But the photoelectric effect suggested
s a particle nature for light. Then electrons too were found to
AAA O ® exhibit dual natures.
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(@T = Photoelectric Effect

E photon = hv

v, . =6.22x10" m/s
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E =vh = wh
700 nm

1.77 eV 550 nm Vv = 2.96)(105 m/s h

225 gV b =
/400 nm 2ﬂ
’ ’
o / ® = 27y
electrons P ,

angle velocity

Potassium - 2.0 eV needed to eject electron

Photoelectric effect

Most commonly observed phenomena with light can be explained by waves. But the photoelectric
effect suggested a particle nature for light.
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Wave-Particle Duality: electron ?
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Publicized early in the debate about whether light was composed of particles or waves, a wave-particle
dual nature soon was found to be characteristic of electrons as well. The evidence for the description of
light as waves was well established at the turn of the century when the photoelectric effect introduced fir
evidence of a particle nature as well. On the other hand, the particle properties of electrons was well
documented when the DeBroglie hypothesis and the subsequent experiments by Davisson and Germer
established the wave nature of the electron.
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( % > Wave Nature of Electron
TEM CENTER NTHU

As a young student at the University of Paris, Louis DeBroglie had been impacted by relativity
and the photoelectric effect, both of which had been introduced in his lifetime. The photoelectric

effect pointed to the particle properties of light, which had been considered to be a wave
phenomenon. He wondered if electrons and other "particles" might exhibit wave properties. The
application of these two new ideas to light pointed to an interesting possibility:

E-aM‘“a/@“’Q‘% ., e %

wmm

- *%%

3

T *
s €< < g <zl M S
1=

[ N Tho_ b
v:>’& M~

—

h
p

§l;|r]c!ay, February 20,



DeBroglie
Wavelength
_ DeBroglie Wavelengths 1= h
\ TEM CENTER /)
| * NTHU

Does this relationship apply to all particles? Consider a pitched

baseball:

10"9m
— v = 40 m/s = 90 mi/hr Atomic
diameter
M=0.15kg 5 __h _ 662610 Js _ 114103 m{ 414,
My (0.15 kg)40 m/s)
Muclear
For an electron accelerated through 100 Volts: v=59 ¥ 10% m/g [ _Diameter
N = 6.626 % 107 s - 1.2% 10792012 nm

(9.11 % 107Tkg)(5.9 x 10° m/s)

This is on the order of atomic dimensions and 15 much shorter than the
shortest visible light wavelength of about 390 nm.
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Examples of Electron Waves
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Two specific examples supporting the wave nature of electrons as suggested in the DeBroglie hypothesis
are the discrete atomic energy levels and the diffraction of electrons from crystal planes in solid materials.

heated _j_ .
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Hydrogen Energy Levels Electron Diffraction

The wave nature of the electron must be invoked to explain the behavior of
electrons when they are confined to dimensions on the order of the size of an
atom. This wave nature 1s used for the quantum mechanical "particle in a box"

and the result of this calculation is used to describe the density of energy states for
electrons in solids.
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Davisson-Germer Experiment
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This experiment demonstrated the wave nature of the electron, confirming the earlier hypothesis
of deBroglie. Putting wave-particle duality on a firm experimental footing, it represented a
major step forward in the development of quantum mechanics. The Bragg law for diffraction

had been applied to x-ray diffraction, but this was the first application to particle waves.
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Wave vs. Particle
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Wave vs. Particle
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—.. Asingle electron is a particle wave
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( double-slit experiment with series of single electron emissions )
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100 electrons 3000 electrons 70,000 electrons
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Wave Packet

NTHU
¥, = sinkx — wt|

¥, =sin[(k + Ak)x — (0 + Aw)?]

; Ak A
Y.+¥, =¥ = ZCOS(%@-t—ézﬁx) . sm[(k+7>x- (w+7w> t]

Modulated Sine wave
amplitude

Modulated Amplitude ("beats")
) Vv
N e i

f{,ﬁ
|

'
!
=
\G
\

€

s |

—

E&
e

c}I;)

T
5
5

/
e

- —

- wave packet —»—

§quay, February 20,



Wave Packet

NTHU
¥, = sinkx — wt|
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Wave Packet
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Wave Packet

NTHU
¥, = sinkx — wt|

¥, =sin[(k + Ak)x — (0 + Aw)?]
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@ Monochromatic Wave
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@ Chromatic Wave

Aw and Ak could be assumed to be very large
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Precisely determined momentum
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AEAL > 3

Heisenberg’s uncertainty principle.
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Assume Ap=p
2

and E e
2m

The uncertainty principle contains implications
about the energy which would be required to

contain a particle within a given volume.

Assume atomic size = 4 A

I
X
20,000 44

Using the atomic size as the uncertainty

Muclear size =

Ap =P - 166 % 1072 kgmis
A%

in position

Energy to:

Confine electron in atom: 9.4 e¥
Confine proton in nucleus: 2.05 MeV¥

These are in the
range of observed
atomic and nuclear
processes.

Confine electron in nucleusﬂ;}.?? GeV¥Y

This is about a factor of a thousand above the
observed enerqgies of nuclear processes, indicating
that the electron cannot be confined in the nucleus.

Heisenberg’s uncertainty principle.
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Confinement Calculation
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Confinement in atom Confinement in nucleus

1
20,000

Muclear size =

Assume atomic size =4 A = AX X 4 A= AR

Ap=-_-331 %10 kgm/s

Ap == 1661079 kgm/s n
b4

T AX

DZ
Ap = P; E=—;
2m

For electron: For electron:

c_ (1.66 x 107%%qg m/s)?

c _ (3.31 % 107%%qg m/s)?
2(9.11 % 107" kg)(1.6 x 1071°0/ev)

2(9.11 % 107" kg)(1.6 x 1071°0/ev)

E=377% 107 eV = 3.77 GeV
For proton, divide by mp/me = 1836

E=205%10°eV = 2.05 MeV

E=904¢eY

T

§l£r]qay, February 20,



HIAYE R E

i ( Heisenberg Uncertainty Principle )

e electron single-slit
diffraction

as e wave goes through slit
- (uncertainty in lateral
< position = d = AX

_uncertainty in momentum
in x-direction = Ap,,

Intensity | |2

Apy, > psin6 , sin6=2A/d = A/AX

p=h/A > Ap,>(h/A)sin6=(h/A)(A/AX) = Ap,*Ax>h

dl = 1: locate the particle more precisely

greater uncertainty in momentum
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Uncertainty Principle in Diffraction
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Uncertainty Principle in Diffraction
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Uncertainty Principle in Diffraction
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Uncertainty Principle in Diffraction
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Uncertainty Principle in Diffraction
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Probability in Quantum Mechanics
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The wavefunction represents the probability amplitude for finding a particle at a
given point in space at a given time. The actual probability of finding the particle 1s
given by the product of the wavefunction with it's complex conjugate (like the
square of the amplitude for a complex function).

P(x,y,z,t)=probability amplitude PP - probability

Since the probability must be = 1 for finding the particle somewhere, the
wavefunction must be normalized. That is, the sum of the probabilities for all of
space must be equal to one. This 1s expressed by the integral

¥ wdr=1

Part of a working solution to the Schrodinger equation is the normalization of the
solution to obtain the physically applicable probability amplitudes.
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